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Abstract

This paper deals with the study of vibration and dynamic instability characteristics of laminated composite doubly
curved panels, subjected to non-uniform follower load, using finite element approach. First order shear deformation
theory is used to model the doubly curved panels, considering the effects of shear deformation and rotary inertia.
The formulation is based on the extension of dynamic, shear deformable theory according to Sanders’ first approxima-
tion for doubly curved laminated shells, which can be reduced to Love’s and Donnell’s theories by means of tracers. The
modal transformation technique is applied to reduce the number of equilibrium equations for subsequent analysis.
Structural damping is introduced into the system in terms of viscous damping. Instability behaviour of curved panels
have been examined considering the various parameters such as width of edge load, load direction control, damping,
influence of fiber orientation and lay up sequence etc. The results show that under follower loading the panel may lose
its stability due to either flutter or divergence, depending on the system parameters.
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Nomenclature
a, b dimensions in the x and y directions respectively
¢ load width parameter

Ey1, E»» Young’s moduli of lamina along respective axes
resultant edge load

thickness

kinetic energy

strain energy associated with bending with transverse shear
work done by the initial in-plane stresses and the non-linear strain
nodal displacement vector

strain displacement matrix

damping matrix

flexural rigidity matrix

elastic stiffness matrix

]  stress stiffness matrix

non-conservative matrix

mass matrix

modal matrix

Poisson’s ratio

mass density

non-dimensional load

non-dimensional frequency

damping loss factor

load direction control parameter

angular frequency of transverse vibration

dWnc variational work done by non-conservative force
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1. Introduction

Fiber-reinforced composite materials are extensively used in laminated thin-walled weight-sensitive
structural parts of various modern engineering in the aerospace, mechanical, automotive and civil engineer-
ing sectors. In general, the forces acting on the structural elements can be classified into conservative and
non-conservative forces. The follower force, the direction of which is configuration dependent, is a typical
example of a non-conservative force. As the magnitude of the in-plane follower force acting over a thin
panel is increased, the component may lose its stability at some stage. In dynamic analysis, the loss of sta-
bility can be identified by the way in which the natural frequencies alter with the increase of load. If any one
of the eigenvalues reduces to zero with the increase of load, then the instability is by divergence (i.e. static
instability). Many times it so happens that two natural frequencies coalesce with each other with the in-
crease of load leading to the flutter type of instability. For example (i) the thrust exerted by the engines
connected to the wing of an aircraft and (ii) highly flexible missiles, rockets and space vehicles changing
orbit under end thrust are prone to either divergence or flutter types of instability.

Bolotin (1963) has studied non-conservative problems of elastic stability through classical approach. Ini-
tially, many researchers have focused their attention on the stability behaviour of one-dimensional elastic
structures subjected to follower forces. Notable works in this field are of Herrmann and Jong (1965), Wu
(1976), Ryu and Sugiyama (1994). Later, several research studies have concentrated on the stability of
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two-dimensional structures, namely flat plates, subjected to follower forces. Culkowski and Reismann
(1977) studied plate buckling due to follower edge forces using analytical method considering two bound-
aries. Farshad (1978) investigated the stability of cantilever plates subjected to biaxial subtangential load
using Galerkin’s method. Leipholz (1978) studied stability of a rectangular simply supported plate subjected
to non-increasing tangential follower forces. Leipholz and Pfendt (1983) used Galerkin’s theory to analyse
the plate with distributed follower forces acting on the surface of the plate. Adali (1982) investigated sta-
bility behaviour of the plate subjected to a tangential follower force and an in-plane force for a clamped-
free plate with two opposite simply supported edges. Higuchi and Dowell (1990, 1992) investigated the dy-
namic stability of completely free-edged rectangular flat plate by neglecting rotary inertia and shear defor-
mation using modal analysis. It was observed that small damping has a predominant effect on the stability
behaviour of a non-conservative system. Datta and Deolasi (1996) studied some aspects of dynamic insta-
bility characteristics of plates subjected to partially distributed follower edge loading with damping. Kim
and Park (1998) investigated the dynamic stability behaviour of rectangular plates subjected to intermediate
follower force. Choo and Kim (2000) studied the dynamic stability of isotropic and non-symmetric lami-
nated rectangular plate with four free edges subjected to pulsating follower force. Kim and Kim (2000)
studied dynamic stability of an isotropic, orthotropic and symmetrically laminated composite plate under
pure follower force considering Mindlin assumption and investigated the effects of shear deformation and
rotary inertia under follower force.

Bismarck-Nasr (1995) studied the stability behaviour of a cantilever cylindrically curved panel subjected
to non-conservative tangential follower forces distributed over the surface and on the free end of the
panel. Park and Kim (2000a,b, 2002) investigated, extensively, dynamic stability characteristics of a com-
pletely free cylindrical and stiff-edged cylindrical shell subjected to follower forces using finite element
method.

Extensive review work have been reported by Qatu (1992), Liew et al. (1997) on shallow shell vibration
and by Herrmann (1967), Komarakul-Na-Nakoran and Arora (1990), Bismarck-Nasr (1992), Langthjem
and Sugiyama (2000) and Bazant (2000) on the systems subjected to non-conservative forces.

Most of the researchers have given importance to study the stability characteristics of plate/shell sub-
jected to uniform edge follower forces. However, it is worth mentioning here that such loads are not very
common in practice. Many practical situations demand the behavioural aspects of such structural elements
under the action of discontinuous/partial edge follower forces with different non-conservative parameters.
For example, the skin (panel) of the wing structure of an aircraft carries non-uniform partial in-plane load,
making the panel susceptible to buckling. The resulting in-plane stress distribution in the panel, in general,
is a combination of tensile and compression stress zones. In a certain domain, when the tensile zone dom-
inates, it gives rise to a stiffening effect. On the other hand, domination of compressive zone leads to a de-
stiffening behaviour. The results of such studies are not available in literature, which can be used in design
practice. Further, dynamic stability analysis of composite panels subjected to follower forces is scanty and
to the authors’ knowledge, no such work is available in literature on the instability analysis of curved com-
posite panels subjected to follower forces. Thus, there exists a wide scope to extend the research on com-
posite curved panel type of structures. In the present work, the dynamic instability behaviour of laminated
composite doubly curved panels (i.e. panels having certain prescribed curvature in x and y directions) sub-
jected to non-uniform follower edge loading has been analysed, considering the effects of structural damp-
ing, load direction control and the lamination parameters.

2. Theory and formulations

The extended Hamilton principle is used to formulate the governing differential equilibrium equation for
a doubly curved panel, taking in to account the work done by non-conservative forces.
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The extended Hamilton principle (Kim and Kim, 2000) can be expressed as

8/(T—U)dt+/8WNCdt:0 (1)

The kinetic energy T of the curved panel can be expressed as

T:%p///(a2+bz+w2)dxdydz (2)

The strain energy U, associated with bending and transverse shear is given by

vi=s5 [ [ (Z / Zkl{gz}z[Q]k{Sl}de) drdy ©

where 7 is the number of layers, z;_; and z; are the distances from middle plane to the bottom and top of
kth lamina. For the kth lamina with general ply orientation, the terms {&}, and [Q], have been defined in
Appendix A.

The expression for the non-linear strain energy due to the initial in-plane stresses and the non-linear

strain is given by

v=1 / / / [0} {en}] dedydz (4)

The expressions for the energies for a descretised panel can be written in matrix form as

Us = 5 1) (K]} )
U = 50} Kel{a} (©
T =2 (@) M3} )

The matrices [K], [Kg], [M] and {¢} are the elastic flexural stiffness matrix, geometric stiffness matrix,
consistent mass matrix and system displacement vector respectively. The system matrices have been derived
using standard finite element procedure (Cook, 1987). Brief descriptions about the formulation of these are
given in Appendix A.

dWnc = Variation of the work done by the non-conservative forces, which consists of two parts: fol-
lower forces and damping forces

SWne = SW g + 8Wp (8)

where Wp and W are work done by the damping and follower forces respectively. dW g = Zle dwi(—P;0,;)
where / is the number of nodes and P; is the resultant in-plane follower force at ith node.

The variation of the work done by the normal component of the follower force (—P;0,,;), which is normal
to the undeformed plane of the plate and acting opposite to the direction of w; for (0.0 < ¢ < 1.0) at the ith
node is expressed as, 6 W ; = dw(—P;0, ;). This can be written in matrix form as

W = {Su;, Sv;, dwi, 80,4, 80,1 [0 0 1 0 0]'[=PJ[0 0 0 O 1]{u;,v:,w;, 04,0}
or in abbreviated form

Wrg,; = {Sq}iT[N]iT[_PMNd]i{q}i
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Considering the components of the forces at all the nodes, the variation of work can be written in matrix
form as

W = {34} INT'[PI[Nal{q}
in which {¢} is the overall displacement vector,
[N] = [[NL INL[N]; - - [N]; -~ [N] ]

1

and
[P] = —diag[[P],[PL,[P]; - -- [P]; - - [P]}]
The variation of the work done by the non-conservative forces can be written in the following form:

5 = {3q}" [Kncl{q} )

in which [Knc] = [N]'[P]Ng4] is the unsymmetric follower force matrix.
The variation of the work done by the damping forces can be written in matrix form as

3Wp = {8q}"[C1{q} (10)

Substituting the energy expressions in Eq. (1) and upon simplification, the following equilibrium equa-
tion for the panel is obtained:

(MI{g} + [CH4} + [Ki{g} - P[[Ke] + [Knc]l{g} = 0 (11)
IMI{g} + [CH4} + (Kl {q} = {0} (12)

where [K]ex = [K] — P[[KG] + [Knc]l

In Eq. (12) {¢} is the nodal displacement vector and P is the magnitude of the applied load. The matrix
[Kg] takes into account all the in-plane forces, including the in-plane (conservative) component of the ap-
plied load, while the matrix [Knc] takes into account the non-conservative component of the follower load
that is in a direction perpendicular to the undeformed mid-plane of the panel. All the relevant matrices are
given in Appendix A. At the end, as [Knc] is non-symmetric, the effective stiffness matrix [K.¢] will also be
non-symmetric and hence the equilibrium Eq. (12) leads to a non-self-adjoint eigenvalue problem for non-
zero P.

For sinusoidal motion of the panel, structural damping matrix can be expressed in terms of an equivalent
viscous damping matrix as follows:

[C] =~ [K] (13)

where 7 is the loss factor for the panel material and w is the frequency of flexural vibration of the panel.

2.1. Modal transformation

The sizes of the various matrices in Eq. (11) are very large and equal to the number of active degrees of
freedom (say n). The solution of this equation in its original form may be prohibitive, particularly for deter-
mining the flutter load. Hence, a modal transformation is applied to Eq. (11) to reduce its size and to retain
only the most dominant modes of vibration corresponding to the first few eigenvalues starting from the
lowest frequency of vibration.

The equilibrium equation for the free vibration of an undamped unloaded panel can be written as

—o’M]{g,} + [K[{go} = 0 (14)
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where o is the angular natural frequency of free vibration and {go} is the corresponding modal vector.
Here, subspace iteration method is used to extract only first few eigenvalues and corresponding eigenvectors
(say m). Then the modal matrix [¢] will have m number of modal vectors with each vector consisting of n
number of elements. Hence the size of the modal matrix will be m X n.

Let the displacement vector be expressed as

{g} = [ol{&} (15)

where {¢} are normal co-ordinates of size m X 1.
Substituting Eq. (15) in Eq. (11) and premultiplying by [¢]", the following m number of equilibrium
equations are obtained:

(6] [M][B1{E} + (0] [ClPI{EY + [ [KI[GI{E} — Plo]' [[K] + [Kncll[9]{E} = {0}

After triple multiplication, the above equation reduces to

{& +[CHE} + [[4] - PIKG]){¢} =0 (16)

where [C] = [¢]"[C][¢] and [Kg] = [¢]"[[Kc] + [Knc]][¢]; [4] is a diagonal matrix containing the eigen-
values of Eq. (14), that is squares of the natural frequencies of free vibration of the unloaded panel.
Using Eq. (13) [C] can be expressed as

~ n
€1="214 (17)
Now considering the motion of the panel in the form {{} = {Eo)el ™, Eq. (16) changes to

— (&} + in[AH&} + ((4] - PKG]){&} =0 or
— @&} + (1 +in)A] - PKG]l{&} =0

Eq. (18) is an eigenvalue problem with eigenvalues »?, which are the squares of the natural frequencies of
vibration under follower load P. Eq. (18) can be solved by using standard eigenvalue routine for a complex
general matrix. The imaginary part of w corresponds to the exponential increment or decrement of the
amplitude of vibration. The system is unstable when any of the values of w of Eq. (18) has a negative imag-
inary part. Further, during the transition from stability to instability if the real part of w is zero, then the
instability occurs due to divergence. Otherwise instability occurs due to flutter.

(18)

3. Problem definition

The basic configuration of the problem considered here is a laminated composite doubly curved panel
(Librescu et al., 1989; Qatu and Leissa, 1991; Liew et al., 1997) as shown in Fig. 1. Fig. 2 shows the plan
view of the curved square panel subjected to partial follower edge load of width ‘¢’ at the free edge at x =«
(free edge) such that the load always maintains a direction that is perpendicular to the normal of the loaded
edge. In the present analysis, two boundary conditions C—F-F-F (x = 0 and «; clamped and free, y = 0 and
b; free and free) and C-F-S-S (x =0 and «; clamped and free, y = 0 and b; simply supported) have been
chosen. Here C-F-F-F refers to a typical cantilever panel, which is very sensitive to the follower load com-
pared to panels with other boundary conditions. However, in order to study the effect of edge restraints by
retaining the symmetry with respect to x-axis the edges parallel to this axis have been restrained by provid-
ing simple supports (C-F-S-S). An eight nodded curved isoparametric quadratic element is used in the pre-
sent analysis with five degrees of freedom u, v, w, 0, and 0, per node. First order shear deformation theory
(FSDT) is used and the shear correction factor of 2 (Librescu et al., 1989; Chandrashekhara, 1989) has been
employed to account for the non-linear distribution of shear strain through the thickness. See Appendix B
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Fig. 2. Curved panels under partial follower edge loading.

for the details. The constitutive relationships (Sahu and Datta, 2001; Chandrashekhara, 1989) and kine-
matic relations (Chandrashekhara, 1989; Reddy, 1984) for doubly curved panels are used. In the present
problem cross-ply and angle-ply laminated curved panels having a/R, and b/R, ratios of (0.0,0.0)
(0.2,0.2) (0.0,0.2) and (—0.2,0.2) for flat, spherical, cylindrical and hyperbolic paraboloidal panels respec-
tively are considered. The ratio of length to breadth (a/b) is 0.5, 1; ratio of breadth to thickness (b/) is 100
and load width parameter (c¢/b) ranges from 0.2 to 1. The material characteristic parameters of Ej;/
E»» =40, G = G153 =0.6E5, Gz =0.5E» and v=0.25 were considered. Unless otherwise stated the
boundary conditions employed in the present analysis are

(a) On edges parallel to y-axis (i) simply supported, S: v =w = 0, = 0; (ii) clamped, C: u=v=w=10,=
0, = 0 and (iii) free, F: no restraints.

(b) On edges parallel to x-axis (i) simply supported, S: u =w =0, =0; (ii) clamped, C: u=v=w =10, =
0, = 0 and (iii) free, F: no restraints.
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In the present analysis, non-dimensional frequencies and buckling loads are represented by the following
definitions:

A= wa (p/Ezzfz) and

Y= Paz/E22b13

where P is the resultant edge load and the other relevant symbols have been explained in the ‘Notation’.

4. Results and discussion

Convergence and comparison studies have been carried out for fundamental frequencies of vibration of
cantilevered laminated doubly curved panels (flat, spherical, cylindrical, hyperbolic paraboloidal) and the
results are compared with those of Qatu and Leissa (1991) in Table 1.

Based on the above convergence study, a 10 x 10 mesh has been employed to discretize the panel in the
subsequent analysis. Table 2 shows the non-dimensional buckling loads for cylindrical panels with different
breadth to thickness ratios and the same are compared with those of Sciuva and Carrera (1990). To validate
the present model subjected to non-conservative (follower) load, the results are compared with Adali (1982)

Table 1
Convergence of non-dimensional fundamental frequencies without in-plane load of cantilevered doubly-curved panels a/b =1,
b/t =100, b/R, = 0.1, E\; = 138GPa, E», =8.96GPa, Gj, = 7.1 GPa, v = 0.3, non-dimensional frequency, 4 = ob®\/(p/En 1)

Mesh division Non-dimensional frequencies of shells
Plate Cylindrical Spherical Hyp-paraboloid
0/9010
4x4 0.9995 1.2477 1.1746 1.1508
8x8 0.9993 1.2473 1.1715 1.1477
10x 10 0.9998 1.2473 1.1715 1.1476
0.9998* 1.2479* 1.1721% 1.1478*
45/—45/45
4x4 0.4615 0.7277 0.6945 0.6585
8x8 0.4596 0.7210 0.6839 0.6465
10x 10 0.4592 0.7197 0.6825 0.6452
0.4607* 0.7197* 0.6845" 0.6448*

# Qatu and Leissa (1991).

Table 2
Comparison of non-dimensional compressive buckling loads, for square simply supported symmetric cross-ply (0/90/0/90/0),
Cylindrical shell panel (a/b = 1, R/a = 200, E]] = 40E22, G12 = G]3 = 0.5E22, 623 = 0.6E22, Vip = Vi3 = 025)

Buckling load for different b/t

blt 10 20 50 100
Present 23.9655 31.7944 35.3974 36.8474
FSDT* 24.19 31.91 35.42 36.86
CST* 35.84 35.88 36.13 37.04

# Sciuva and Carrera (1990).
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Table 3
Comparison of non-dimensional flutter loads y., and non-dimensional flutter frequencies A, for an isotropic C-F-S-S plate ¢/b = 1.0
and v=10.3

Aspect ratio Flutter load y,, Flutter frequency /.,

alb Present Adali (1982) Datta and Deolasi (1996) Present Adali (1982) Deolasi (1996)
1.0 51.651 51.650 52.06 16.685 16.67 16.33

0.5 26.923 27.11 27.20 49.567 49.58 49.30

and Deolasi (1996) in Table 3 and the numerical results of critical flutter load and flutter frequencies are
found to be in good agreement.

4.1. Follower edge load on cross-ply laminated panels

Figs. 3-5 show the variation of the real part of the natural frequency Re(Z1) with applied follower load 7,
for spherical, cylindrical and hyperbolic paraboloidal panels respectively for the first flutter mode. In this
analysis, 0/90/0 and 0/90/90/0 cross-ply laminated cantilever panels are considered with ratios a/b =1, b/
t =100 and ¢/b = 1. In this case, the end follower load is uniformly distributed at the edge opposite to the
fixed edge. From the figure, it is observed that at a certain value of the load, the two frequencies coalesce
and beyond this value of load, the two frequencies become complex conjugate with one having negative
imaginary part. This is the condition, which corresponds to flutter. The load and frequency at which coa-
lesce of frequencies occurs are termed as the flutter load 7., and flutter frequency /., respectively.

From the figures, it is observed that for the given geometry, boundary conditions and load parameter,
the flutter load is less affected by ply layups for the spherical panel. However, for the cases of cylindrical and
hyperbolic paraboloidal panels, 0/90/0 ply layup showed higher flutter load. This may be due to the higher
stiffness of these two panels for the given ply layup.

Table 4 shows the numerical results of flutter load and frequency for 0/90, 0/90/0, 0/90/90/0 layups for
each of spherical, cylindrical and hyperbolic paraboloidal panels having aspect ratio a/b = 1, breadth to
thickness ratio b/t = 100, subjected to end follower load at the free edge having load width ratios (c¢/b)
0f 0.2, 0.4, 0.6, 0.8 and 1. It is noticed from the table that the magnitude of the flutter load and frequencies

— 0O—0—0—O0—0—,
244 o o000 o—o,
1 O,
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Fig. 3. Non-dimensional natural frequency Re(Z) versus non-dimensional follower force y for C-F-F-F spherical panel.
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Fig. 5. As Fig. 3, but hyperbolic paraboloidal panel.

are changing appreciably with load width ratio (¢/b). It may be concluded from the table that for certain
panel geometry, critical buckling load, 7., usually decreases as ¢/b increases (CFFF boundary). However,
for ¢/b transition from 0.8 to 1, y., increases again. This can be attributed to the fact that as the load width
approaches the full edge, boundary restraint causes higher buckling load.

Table 5 shows critical flutter load (y.,) for a/b = 0.5, b/t = 100 for 0/90/0 and 0/90/90/0 C-F-S-S lam-
inated panels. From the table it is observed that the critical flutter load is changing appreciably with the
load width ratio and the aspect ratio.

The effect of ply layups on flutter loads of the panels for the given geometry, boundary conditions
and load parameter is further illustrated in Figs. 6 and 7. Three ply layups 0/90, 0/90/0, 0/90/90/0 have
been considered. From the figures, it is observed that the number of layers and ply orientations have
very significant effect on the dynamic stability characteristics for different layups. The variations in the
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Table 4
Non-dimensional critical flutter load and frequencies for laminated cross-ply curved panels for a/b =1, b/t = 100 with different ply
orientations and load width ratios

¢/b ratio 0/90 0/90/0 0/90/90/0
Vcr j'Cl’ ycr ;LCI‘ ycr A-cr
Spherical panel
C-F-F-F condition
0.2 21.98 10.5648 42.68 31.1812 38.72 31.2395
0.4 21.04 10.5057 50.92 29.2040 46.08 29.6540
0.6 19.02 10.4117 65.56 25.9260 59.58 26.7233
0.8 16.48 10.2959 57.94 16.8124 60.68 17.9470
1.0 14.38 10.2731 59.42 18.4189 57.88 18.7071
C-F-S-S condition
0.2 24.94 38.4344 18.26 50.2713 49.18 75.7609
0.4 29.56 37.045 27.46 48.783 67.36 31.8624
0.6 36.34 35.7183 42.18 47.4435 78.26 30.9957
0.8 41.02 40.9270 97.92 30.0668 92.32 45.6664
1.0 47.54 40.4200 113.20 41.4227 105.50 45.6987
Cylindrical panel
C-F-F-F condition
0.2 12.64 19.4779 39.84 26.1496 37.30 27.3124
0.4 13.70 19.1703 46.20 25.0577 42.98 26.3055
0.6 15.24 18.6917 42.50 32.9229 52.90 25.0795
0.8 17.26 17.9412 43.40 31.9895 66.18 23.6503
1.0 12.88 18.3442 70.58 20.0802 64.82 19.2167
C-F-S-S condition
0.2 23.8 14.3968 10.66 42.6567 49.08 25.1130
0.4 26.42 14.0974 14.86 42.084 53.7 24.2472
0.6 24.18 31.3254 22.08 41.4484 61.48 34.7552
0.8 24.72 31.3308 29.72 41.2705 62.8 34.9031
1.0 31.52 30.6515 86.04 27.6056 80.18 34.1986

Hyperbolic paraboloidal panel
C-F-F-F condition

0.2 14.22 11.795 25.12 30.8181 23.86 31.2907
0.4 14.44 11.2952 29.94 29.8788 28.10 30.5076
0.6 15.16 10.9668 37.70 38.3431 36.42 29.3078
0.8 16.18 10.7535 55.50 26.7002 56.00 26.4095
1.0 16.88 8.9762 62.84 19.1567 60.46 18.9108
C-F-S-S condition
0.2 4.74 21.3327 30.62 28.717 28.68 28.1613
0.4 5.20 21.3122 33.92 28.0666 31.74 27.8309
0.6 6.00 21.2775 39.92 27.6320 36.98 27.5470
0.8 7.14 21.2444 48.48 27.3824 44.52 27.3025
1.0 8.66 21.2050 59.82 27.1756 54.90 27.0707

flutter frequency and load can be attributed to the fact that the ply layups significantly alter the stiff-
ness characteristics of the panels for the given geometry, boundary conditions and the load parameter.
It is also observed that the variation of the real part of natural frequency Re(4) is significantly affected
by the applied follower load for spherical, cylindrical and hyperbolic paraboloidal panels for the flutter
mode.
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Table 5
Non-dimensional critical flutter load for C-F-S-S laminated cross-ply curved panels with a/b = 0.5, b/t = 100 with different load width
ratios

¢/b ratio Spherical Cylindrical Hyper-paraboloidal
0/90/0 0/90/90/0 0/90/0 0/90/90/0 0/90/0 0/90/90/0
C—F-F-F condition
0.2 17.315 14.035 17.505 14.265 15.115 11.310
0.4 26.605 21.520 26.450 21.625 23.430 17.425
0.6 39.300 18.595 38.755 31.970 34.745 26.200
0.8 17.585 24.395 51.540 47.480 45.390 34.425
1.0 34.920 37.330 61.425 56.385 51.525 48.520
C-F-S-S condition
0.2 9.505 17.485 10.585 17.210 7.000 15.145
0.4 17.005 22.480 18.730 21.840 12.560 16.605
0.6 23.340 25.810 27.760 24.970 22.715 18.705
0.8 31.135 33.890 36.915 33.065 32.850 24.780
1.0 67.130 62.025 64.820 59.865 59.430 54.290
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Fig. 6. Non-dimensional natural frequency Re(Z) versus non-dimensional follower load y for C—-F—S-S cross-ply laminated cylindrical
panel for a/b =1, ¢/b =1, b/t =100 for the first flutter mode.

4.2. Follower edge load on angle-ply laminated panels

Figs. 8 and 9 show the variation of frequency with the load for the first flutter mode for C-F-S-S spher-
ical and cylindrical panels having ply orientation of 0/—0/0, 0 having values of 15, 30, 45, 60, 75 degrees
respectively. In this example, the follower force is acting at the free edge of the panel. From the figures
it is observed that the value of the critical load substantially changes with ply angle of the laminate. Table
6 shows numerical results for cantilevered C-F-F—F panels having three different ply orientations 45/—45,
45/—45/45 and 45/—45/45/—45 with a/b =1 and b/t = 100. From the table it is observed that the critical
load is significantly affected by load width ratio (¢/b) for all ply orientations. Maximum critical load occurs
at ¢/b = 0.2 for the spherical panel. However, for cylindrical and hyperbolic paraboloidal panels, critical
load increases with load width.
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Fig. 8. Non-dimensional natural frequency Re(4) versus non-dimensional follower load y for C-F-S-S angle-ply 6/—6/6 laminated
spherical panel for a/b =1, ¢/b =1, b/t = 100 for the first flutter mode.

4.3. Effects of damping parameter

In the presence of damping, eigenfrequencies of the panels are always complex quantities irrespective of
the panel is stable or not. However, before the loss of stability by flutter the imaginary parts of the eigen-
values are always positive. Fig. 10(a) and (b) show the real and imaginary part of the complex frequency 4
for 0/90/0 laminated hyperbolic paraboloidal panel for a/b =1, b/t = 100 and ¢/b = 1 with three damping
levels, 7 =0.0, 0.02 and 0.1. From the analysis it is observed that when # =0, the two real frequencies
merge together into a pair of conjugate complex frequency (4 = Re(4) £+ Im(2)) at y. (59.82) (Fig. 10) to
form a flutter mode. As 7 is increased beyond 7., there is a rapid increase in the imaginary parts of the
natural frequencies. Since one of the frequencies has a negative imaginary part, the panels undergo strong
flutter.
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Table 6
Non-dimensional critical flutter loads for laminated C-F-F-F angle-ply curved panels with different ply orientations and different of
load width ratios

Type of panel Ply-orientation ¢/b ratio
0.2 0.4 0.6 0.8 1.0
Non-dimensional critical load y.,
Spherical 45/—-45 9.86 9.76 9.62 9.46 9.44
45/—-45/45 11.94 11.58 11.18 10.84 9.38
45/—45/45/—45 16.48 16.34 16.14 16.00 16.08
Cylindrical 45/—45 7.42 8.06 8.98 10.02 11.18
45/—45/45 8.38 9.22 11.08 15.30 15.72
45/—45/45/—45 20.02 20.82 21.60 22.26 23.02
Hyperbolic paraboloid 45/—45 7.98 8.52 9.28 10.22 16.82
45/—-45/45 5.90 6.32 6.82 7.42 8.04
45/—45/45/—45 21.94 22.76 23.46 24.00 28.54

If n # 0, the two curves corresponding to the real part of the frequencies do not merge, but approach
each other (Fig. 10(a)) and initially both eigencurves have positive imaginary parts (Fig. 10(b)). However,
as y is increased, the imaginary part of the first frequency gradually changes from positive to negative
(crosses zero frequency line) at % at 54.56 and 56.18 for # =0.02 and 0.1 respectively. This means that
the flutter in the presence of damping occurs at a lower load as compared to that without damping. The
negative imaginary part of the first natural frequency implies that there is a negative effective damping
in the first mode for y greater than y;,.

Table 7 shows the numerical results for the critical flutter load for spherical, cylindrical and hyperbolic
paraboloidal panels with different ¢/b ratios and damping factors. In the results presented, 0/90, 0/90/0, 0/
90/90/0 cross-ply laminated panels with three different damping levels # = 0, 0.02 and 0.1 are considered. In
general, it is noticed from the table that the damping has a significant effect on the flutter behaviour (sta-
bilizing or destabilizing) of the laminated panels with the type of ply and the angle of orientations subjected
to follower loading.
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Fig. 10. (a) Non-dimensional natural frequency (Real part (1)) versus non-dimensional follower load y for C-F-S-S 0/90/0 laminated
hyperbolic paraboloidal panel for a/b =1, ¢/b =1, b/t = 100 for the first flutter mode with damping factors. (b) As Fig. 10(a), but for
imaginary part of the frequency.

4.4. Effect of load direction control parameter

The follower force considered in the previous sections was a tangential force with the value of ¢ = 1.
However, it is possible to consider a follower force that maintains an angle @0, at the edge, where ¢ is
a direction control parameter as shown in Fig. 2. The loading in this case is called the controlled follower
force. Such a force can be realized by means of some direction control mechanism. In this case, the free
vibration, divergence and flutter problems can be solved by simply replacing the matrix [Knc] by ¢[Knc]
in Eq. (11). The value of ¢ ranges from 0 to 1. For ¢ = 0, the system is conservative and only divergence
instabilities exist.

Fig. 11 shows the effect of different ¢ on the real part of the natural frequency with different ¢/b ratios for a
C-F-S-S hyperbolic paraboloidal panel having 0/90/0 ply orientation subjected to uniformly distributed fol-
lower edge load at the free edge. It is observed that the increase in the direction control parameter of the fol-
lower load has a stabilizing behaviour. Similar results were observed for the case of spherical panel. This
behaviour is similar to that of an isotropic flat panel (Deolasi, 1996). However, in the case of cylindrical panel,
increasing direction control parameter gives a destabilizing effect for the narrow partial follower edge load.
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Table 7
Non-dimensional critical flutter load for laminated cross-ply C—F-S—S laminated curved panels with effect of damping, different ply
orientations and positions of load width ratio

Type of panel Layup Damping parameter ¢/b ratio
0.2 0.4 0.6 0.8 1.0
Non-dimensional critical load 7y,
Spherical 0/90 0.0 24.94 29.56 36.34 41.02 47.54
0.02 18.70 21.42 25.72 31.44 38.50
0.1 18.84 21.60 25.94 31.72 32.84
0/90/0 0.0 18.26 27.46 42.18 97.92 113.2
0.02 18.42 27.86 44.62 55.56 71.56
0.1 25.06 37.56 44.96 56.10 72.18
0/90/90/0 0.0 49.18 67.36 78.26 92.32 105.5
0.02 34.14 38.58 46.28 57.40 74.72
0.1 34.38 38.88 46.66 57.90 74.72
Cylindrical 0/90 0.0 23.80 26.42 24.18 24.72 31.52
0.02 20.78 23.12 23.84 23.90 22.72
0.1 21.30 23.68 27.62 27.78 32.26
0/90/0 0.0 10.66 14.86 22.08 29.72 86.04
0.02 10.90 15.28 23.38 57.66 75.18
0.1 17.32 38.18 46.58 58.32 76.16
0/90/90/0 0.0 49.08 53.70 61.48 62.80 80.18
0.02 34.28 38.64 46.12 57.04 74.68
0.1 34.64 39.08 46.68 57.76 75.78
Hyperbolic paraboloid 0/90 0.0 4.74 5.20 6.00 7.14 8.66
0.02 4.74 5.22 6.02 7.20 8.78
0.1 5.88 6.50 7.54 9.06 11.06
0/90/0 0.0 30.62 33.92 39.92 48.48 59.82
0.02 27.06 30.38 36.04 43.96 54.56
0.1 27.68 31.14 37.02 45.18 56.18
0/90/90/0 0.0 28.68 31.74 36.98 44.52 54.90
0.02 26.00 28.94 33.88 40.92 50.76
0.1 26.70 29.78 34.90 42.22 52.50

5. Conclusions

The results from the dynamic instability analysis of the laminated composite panels subjected to partially
distributed follower edge loading can be summarized as follows:

Follower loading on the free edges may imply flutter type of instability beyond a certain value of the
follower load due to coalescence of two frequencies into a complex conjugate pair. Flutter is observed
to be more common than divergence under follower loading.

The critical flutter condition generally decreases (more susceptible to flutter) with increasing load width
upto a particular value and then it increases as the load width extends over the entire edge of the plate/
panel.
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Fig. 11. Effect of load direction control parameter on non-dimensional critical flutter load 7., with load width ratio ¢/b for C-F-S-S
cross-ply 0/90/0 laminated hyperbolic paraboloidal panel having a/b =1, ¢/b =1, b/t = 100 for the first flutter mode.

Damping in the system is found to have a significant effect on the flutter behaviour of curved panel,
depending on the ply orientations of different panel geometries and load width ratios. In most cases, the
damping effect gives destabilizing behaviour making the panel prone to flutter. The destabilizing effect of
damping implies that the effective damping becomes negative beyond a certain load in one of the two modes
as the imaginary part of the eigenvalue becomes negative giving rise to the flutter phenomenon. However, it
is difficult to explain the above phenomenon, both, physically and mathematically.

Type of ply orientation, number of lay-ups and ply angle affect significantly the stability behaviour under
distributed and partially distributed follower edge load.

Direction control parameter significantly affects the critical flutter load, showing both the effects of sta-
bilizing and destabilizing behaviour depending on the panel geometry. In the cases of spherical and hyper-
bolic paraboloidal panels, the effect is stabilizing and for the case of cylindrical panel, it shows destabilizing
behaviour.

Appendix A

The reduced stress—stain relations for an orthotropic kth layer under a plane stress assumption (g, = 0)
with reference to the principal directions of the lamina is

0] [0 Qi €1

02 O, Oy &

T12 = Oee 712 (A1)
723 Oy V23

31 ) L Oss |, Uvat )i

Premultiplying the above by the transpose of a suitable rotation matrix i.e. [R]" and then postmul-

tiplying by [R], we can arrive at the stiffness matrix [Q] of a lamina with reference to the x—y axes as given
below:
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Ox O On O &x

Oy On 0n O &y

Ty ¢ = |0 O O Yy (A2)
Tyz Ou Ous Vyz

Tz )k Ois Oss [y Loz )y

Using the classical lamination theory, the linear strain in any lamina can be expressed in terms of middle
plane strains and curvatures as

&x £ Ky
&y 8.(3 Ky
Yy ¢ = ygy +24 Ky (A.3)
s V_?z Kyz
Vax )i ’)/gx Kzx

Using the constitutive relation given in Eq. (A.2), one can establish the relation between the stress result-
ants with that of the middle plane strains and curvatures for the laminate as given below:

N,' Alj B,] 0 8]
M, = |B; D; 0 K;
Qi 0 0 Sij Vm
{F} = [Di{e}
where A;, By, D; and S;; are the extensional, bending—stretching coupling, bending and transverse shear

stiffnesses. They may be defined as

(Qij)k(zz _213—1)7 i,j=1,2,6

S,‘j =K (@ij)k(Zk—Zk,l), l,]:4,5

k=1

where k is the transverse shear correction factor.

A.1. Element stiffness matrix

K] = / (B]"(D][B] dxdy
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where [B] is strain displacement matrix

-, N -
% 0 . 0 0
ON; N
0 % R—: 0 0
ON; ON;
o & 0 0 O
0 0 0 W o
8] = ’ L i=1,2,...,8
0 0 0 0 W
v
ON; oN; ON; ON;
Gt Cogr 0 T
Ni ON;
_CIE 0 o Ni 0
o ap oo N

A.2. Element mass matrix or consistent matrix

o= | foripras

in which,

=

I
o o o o =
c o o = o

P 0 0 P
Pl={0 0 P, 0 0
P, 0 0 Py 0
L0 P, 0 0 P

and

(Pl,Pz,Pg / lZZ

A.3. Geometric stiffness matrix

ksl = [ (6] IS) Gl



2262 L. Ravi Kumar et al. | International Journal of Solids and Structures 42 (2005) 2243-2264

in which,
[s 0 0 0 0]
0 s 000
[S]=10 0 s 0 O
000 s 0
000 0 0 s
Ox Ty
=7 7]
Ty Oy
(%0 0 0 0]
w0 0 0 O
y
0 2 0 0 0
0 %% o0 0 0
y
20 o0
[G] = T , i=1,23,...,8
0 G 0 0
0 0 0 % o
0 0 0 % o
0 0 0 o0 2
0o 0 0 0 %
L y

Finally, the overall structural matrices [K], [M]and [Kg] can be obtained after assembling element matri-
ces [k], [m] and [kg] respectively.

Appendix B

Let QO be the resultant shear force/unit width of plate at any cross section normal to x or y axis.

Lo A

2
.1 |
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Case 1. Assuming the shear force induces an uniform shear stress and a constant shear strain over the
depth, i.e. t = Q/t as the width is unity.
The expression for strain energy of the plate per unit width is

A G Gt G

Case 2: Considering the actual shear stress distribution over the depth (i.e. shear strain 7 is not constant).
The shear stress at any distance z from middle layer is

= o (B.2)

Considering unit width of plate, the moment of the area Az can be expressed as

=195~ G-3) w

or on simplification Eq. (B.3) reduces to

1
Substituting 7 = 7°/12 per unit width and Eq. (B.4) in Eq. (B.2), we get
0 1 12

4z = Qg(tz —47%) (B.5)

T
Substituting Eq. (B.5) in the expression for strain energy U = % fOL / 4 % dadx and performing integration
over the thickness we get

_l L Q2 _l L Q2
U—2/0 —(gG)tdx_2/o Gt dx where a =5/6 (B.6)

=

Comparing Egs. (B.1) and (B.6), it may be concluded that if one considers the average shear stress dis-
tribution and constant shear strain over the depth in the constitutive relationship, the effect of warping can
be accounted by multiplying the rigidity modulus by a factor « = 5/6, if the section is rectangular.
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